( *: corresponding author)



135*.  Miwa T and *Taguchi H 
Escherichia coli small heat shock protein IbpA plays a role in regulating the heat shock response by controlling the translation of σ32.
Proc Natl Acad Sci USA in press (2023)


134. Matsumoto R, Niwa T, Shimane Y, Kuruma Y, Taguchi H, Kanamori T.
Regulated N-terminal modification of proteins synthesized using a reconstituted cell-free protein synthesis system.
ACS Synth Biol  in press (2023)


133. Shen HK, Morishita K, Hashim PK, Okuro K, Kashiwagi D, Kimura A, Yanagisawa H, Kikkawa M, Niwa T, Taguchi H, Aida T.
ATP-Responsive Nanoparticles Covered with Biomolecular Machine “Chaperonin GroEL”.
Angew Chem Int Ed in press (2023) (open access)


132. Fujino Y, Ueyama M, Ishiguro T, Ozawa D, Ito H, Sugiki T, Murata A, Ishiguro A, Gendron TF, Mori K, Tokuda E, Taminato T, Konno T, Koyama A, Kawabe Y, Takeuchi T, Furukawa Y, Fujiwara T, Ikeda M, Mizuno T, Mochizuki H, Mizusawa H, Wada K, Ishikawa K, Onodera O, Nakatani K, Petrucelli L, Taguchi H, Nagai Y.
FUS regulates RAN translation through modulating the G-quadruplex structure of GGGGCC repeat RNA in C9orf72-linked ALS/FTD.
eLife in press (2023) doi: 10.7554/eLife.84338.1 (open access)


131. Minami S, Niwa T, Uemura E, Koike R, Taguchi H, *Ota M.
A method that predicts chaperonin GroE substrates using small structural patterns of proteins.
FEBS Open Bio 13, 779–794 (2023) doi: 10.1002/2211-5463.13590 (open access)


130*.  *Taguchi H and Koike-Takeshita A
In vivo client proteins of the chaperonin GroEL-GroES provide insight into the role of chaperones in protein evolution.(review)
Front Mol Biosci 10:1091677 (2023) (open access)


129*. *Chiba S, Fujiwara K, Chadani Y, *Taguchi H.
Nascent chain-mediated translation regulation in bacteria: translation arrest and intrinsic ribosome destabilization. (review)
J Biochem. 2023 Jan 31:mvad007. doi: 10.1093/jb/mvad007. 


128*. Yamakawa A, *Niwa T, *Chadani Y, Kobo A, *Taguchi H.
A method to enrich polypeptidyl-tRNAs to capture snapshots of translation in the cell.
Nucleic Acids Res Jan 30:gkac1276.(2023) doi: 10.1093/nar/gkac1276. (open access)

127*. Onodera H, Niwa T, *Taguchi H, *Chadani Y.
Prophage excision switches the primary ribosome rescue pathway and rescue-associated gene regulations in Escherichia coli.
Mol Microbiol 119(1):44-58.(2023)  doi: 10.1111/mmi.15003.



126*. Ito Y, *Chadani Y, Niwa T, Yamakawa A, Machida K, Imataka H, *Taguchi H.
Nascent peptide-induced translation discontinuation in eukaryotes impacts biased amino acid usage in proteomes. ( equally contributed authors)
Nat Commun 13:7451 (2022) doi: 10.1038/s41467-022-35156-x.


125*. Niwa T, Nakazawa K, Hoshi K, Tadakuma H, Ito K, *Taguchi, H.
Application of fluorescence correlation spectroscopy to investigate the dynamics of a ribosome-associated trigger factor in Escherichia coli.
Front Mol Biosci Aug 25;9:891128 (2022)  doi: 10.3389/fmolb.2022.891128


124*. Niwa T, Chadani Y, *Taguchi, H.
Shotgun proteomics revealed preferential degradation of misfolded in vivo obligate GroE substrates by Lon protease in Escherichia coli.
Molecules (2022) 27:3772 (2022)  doi: 10.3390/molecules27123772


123. Nakane K, Niwa T, Tsushima M, Tomoshige S, Taguchi H, Nakamura H, Ishikawa M, *Sato, S.
BODIPY catalyzes proximity-dependent histidine labelling.
ChemCatChem 14, e202200077 (2022)

122. Hirai K, Yamashita H, *Tomoshige S, Mishima Y, Niwa T, Ohgane K, Ishii M, Kanamitsu K, Ikemi Y, Nakagawa S, Taguchi H, Sato S, Hashimoto Y, *Ishikawa M.
Conversion of a PROTAC mutant Huntingtin degrader into small-molecule hydrophobic tags focusing on drug-like properties.
ACS Med Chem Lett  13(3):396-402. (2022) . doi: 10.1021/acsmedchemlett.1c00500.

121.  Tsushima M, *Sato S, Miura K, Niwa T, Taguchi H and *Nakamura H.
Intracellular photocatalytic-proximity labeling for profiling protein–protein interactions in microenvironments.
Chem Commun Feb 8;58(12):1926-1929. (2022)
doi: 10.1039/d1cc05764b.

120. Fujita T, Yokoyama T, Shirouzu M, Taguchi, H, Ito T, *Iwasaki S.
The landscape of translational stall sites in bacteria revealed by monosome and disome profiling.
RNA Mar;28(3):290-302. (2022) 
PMID: 34906996,  DOI: 10.1261/rna.078188.120

119*. Nakagawa Y, Shen H C-H, Komi Y, Sugiyama S, Kurinomaru T, Tomabechi Y, Krayukhina E, Okamoto K, Yokoyama T, Shirouzu M, Uchiyama S, Inaba M, Niwa T, Sako Y, *Taguchi, H, *Tanaka M
Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system.
Nat Chem Biol 18, 321–331 (2022)
doi: 10.1038/s41589-021-00951-y



118*. *Chadani Y, Sugata N, Niwa T, Ito Y, Iwasaki S, *Taguchi H.
Nascent polypeptide within the exit tunnel stabilizes the ribosome to counteract risky translation.
EMBO J (2021) Oct 20:e108299.
doi: 10.15252/embj.2021108299

117. Nanaura H, Kawamukai H, Fujiwara A, Uehara T, Aiba Y, Nakanishi M, Shiota T, Hibino M, Wiriyasermkul P, Kikuchi S, Nagata R, Matsubayashi M, Shinkai Y, Niwa T, Mannen T, Morikawa N, Iguchi N, Kiriyama T, Morishima K, Inoue R, Sugiyama M, Oda T, Kodera N, Toma-Fukai S, Sato M, Taguchi H, Nagamori S, Shoji O, Ishimori K, Matsumura H, Sugie K, *Saio T, *Yoshizawa T, *Mori E.
C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers.
Nat Commun 12:5301 (2021)
doi: 10.1038/s41467-021-25560-0, PMID: 34489423

116. Shimada T, Nakazawa K, Tachikawa T, Natsumi Saito N, Niwa T, Taguchi H and *Tanaka K.
Roles of acetate overflow metabolism in a major metabolic shift after glucose depletion in Escherichia coli.
FEBS L 595, 2047-2056 (2021)
PMID: 34125966 doi: 10.1002/1873-3468.14151

115. Nakane K, *Sato S, Niwa T, Tsushima M, Tomoshige S, Taguchi, H, Ishikawa M, *Nakamura H.
Proximity histidine labeling by umpolung strategy using singlet oxygen.
J Am Chem Soc 143, 7726-7731 (2021)
PMID: 33904715 doi: 10.1021/jacs.1c01626

114*. Miwa T, *Taguchi, H.
Novel self-regulation strategy of a small heat shock protein for prodigious and rapid expression on demand (review).
Current Genetics (2021) 67, 723-727 (2021)
PMID: 33839884 doi: 10.1007/s00294-021-01185-0

113. Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, Toyoshima M, Shimizu H, *Hisabori T.
Thioredoxin pathway in Anabaena sp. PCC 7120: activity of NADPH-thioredoxin reductase C
J Biochem 26 Feb (2021) 

112. Luu Trinh MD, Miyazaki D, Ono S, Nomata J, Kono M, Mino H, Niwa T, Okegawa Y, Motohashi K, Taguchi H, Hisabori T, *Masuda S.
The evolutionary conserved iron-sulfur protein TCR controls P700 oxidation in photosystem I.
iScience 2021 Jan 13;24(2):102059. doi: 10.1016/j.isci.2021.102059.

111*. Miwa T, Chadani Y, *Taguchi, H.
Escherichia coli small heat shock protein IbpA is an aggregation-sensor that self-regulates its own expression at post-transcriptional levels.
Mol Microbiol 115:142-156 (2020) doi: 10.1111/mmi.14606.

110. Masuzawa T, *Sato S, Niwa T, Taguchi H, Nakamura H, and *Oyoshi T.
G-Quadruplex-Proximity Protein Labeling Based on Peroxidase Activity.
Chem Commun 56(78):11641-11644 (2020)

109. Kashiwagi D, Shen HK, Sim S, Sano K, Ishida Y, Kimura A, Niwa T, Taguchi H, *Aida T.
Molecularly engineered “Janus GroEL”: Application to supramolecular copolymerization with a higher level of sequence control.
J Am Chem Soc 142, 13310-13315 (2020)
doi: 10.1021/jacs.0c05937

108*. †Konno H, †Watanabe-Nakayama T, Uchihashi T, Okuda M, Zhu L, Kodera N, Kikuchi Y, *Ando T, *Taguchi, H. † equally contributed authors
Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy.
Proc Natl Acad Sci USA 117, 7831-7836 (2020)
doi: 10.1073/pnas.1916452117

107. Muta M, *Iizuka R, Niwa T, Guo Y, Taguchi H and *Funatsu T
Nascent SecM chain interacts with outer ribosomal surface to stabilize translation arrest.
Biochem J 477, 557-566 (2020)
doi: 10.1042/BCJ20190723.

106. Tsushima M, Sato S*, Niwa T, Taguchi, H, *Nakamura H
Catalyst-Proximity Protein Chemical Labelling on Affinity Beads Targeting Endogenous Lectins.
Chem Commun 55, 13275-13278 (2019)
doi: 10.1039/c9cc05231c.

105*. Fukuda, T, Kawai-Noma, S., Pack, C-G., *Taguchi H
Large-scale analysis of diffusional dynamics of proteins in living yeast cells using fluorescence correlation spectroscopy.
Biochem Biophys Res Commun 520, 237-242 (2019)
doi: 10.1016/j.bbrc.2019.09.066

104*. Niwa T, Uemura E, Matsuno Y, *Taguchi, H.
Translation-coupled protein folding assay using a protease to monitor the folding status. [Protein Science Best Paper award 2019]
Protein Science 28, 1252-1261 (2019)
doi: 10.1002/pro.3624

103. Deschoenmaeker F, Mihara S, Niwa T, Taguchi, H, Wakabayashi KI, *Hisabori T.
Disruption of the gene trx-m1 impedes the growth of Anabaena sp. PCC 7120 under nitrogen starvation.
Plant Cell Physiol. 60, 1504-1513 (2019)
doi: 10.1093/pcp/pcz056

102*. *Nojima T, Niwa T, *Taguchi H.
Proteome analysis of phase-separated condensed proteins with ionic surfactants revealed versatile formation of artificial biomolecular condensate.
Biomacromolecules 20, 539-545 (2019)
doi: 10.1021/acs.biomac.8b01379

101. Furuki T, Niwa T, Taguchi H, Hatanaka R, Kikawada T, *Sakurai M.
A LEA model peptide protects the function of a red fluorescent protein in the dry state.
Biochem Biophys Rep 17: 27-31 (2018)
doi: 10.1016/j.bbrep.2018.11.006

100. Sugita S, Watanabe K, Hashimoto K, Niwa T, Uemura E, Taguchi H, *Watanabe YH.
Electrostatic interactions between middle domain motif-1 and the AAA1 module of the bacterial ClpB chaperone are essential for protein disaggregation.
J Biol Chem 293, 19228-19239 (2018)
doi: 10.1074/jbc.RA118.005496

99. Deschoenmaeker F, Mihara S, Niwa T, Taguchi H, Wakabayashi KI, *Hisabori T.
The absence of thioredoxin m1 and thioredoxin C in Anabaena sp. PCC 7120 leads to oxidative stress.
Plant Cell Physiol 59: 2432-2441 (2018)
doi: 10.1093/pcp/pcy163

98*. Uemura E, Niwa T, Minami S, Takemoto K, Fukuchi S, Machida K, Imataka H, Ueda T, Ota M, *Taguchi H.
Large-scale aggregation analysis of eukaryotic proteins reveals an involvement of intrinsically disordered regions in protein folding.
Sci Rep 8:678. (2018)
doi: 10.1038/s41598-017-18977-5

97. Kashiwagi D, Sim S, Niwa T, Taguchi H, *Aida, T.
Protein nanotube selectively cleavable with DNA: supramolecular polymerization of DNA-appended molecular chaperones.
J Am Chem Soc 140, 26-29 (2018)
doi: 10.1021/jacs.7b09892

96. *Pack CG, Inoue Y, Higurashi T, Kawai-Noma S, Hayashi D, Craig E, Taguchi H.
Heterogeneous interaction network of yeast prions and remodeling factors detected in live cells.
BMB Rep 50, 478-483 (2017)
doi: 10.5483/bmbrep.2017.50.9.084

95*. Chadani Y, Niwa T, Izumi T, Sugata N, Nagao A, Suzuki T, Chiba S, *Ito K, *Taguchi H.
Intrinsic ribosome destabilization underlies translation and provides an organism with a strategy of environmental sensing.
Mol Cell 68, 528-539 (2017)
doi: 10.1016/j.molcel.2017.10.020

94. *Fujiwara K, Sawamura T, Niwa T, Deyama T, Nomura MS, Taguchi H, Doi N.
In vitro transcription-translation using bacterial genome as a template to reconstitute intracellular profile.
Nucleic Acids Res 45, 11449-11458 (2017)
doi: 10.1093/nar/gkx776

93. Sim SH, Niwa T, Taguchi H, *Aida T.
Supramolecular nanotube of chaperonin GroEL: Length control for cellular uptake using single-ring GroEL mutant as end-capper.
J Am Chem Soc 138, 11152-11155 (2016)
doi: 10.1021/jacs.6b07925

92*. Chadani Y, Niwa T, Chiba S, Taguchi, H.*, Ito K.*
Integrated in vivo and in vitro nascent chain profiling reveals widespread translational pausing.
Proc Natl Acad Sci USA. 113, E829-38 (2016)

91*. Niwa. T, Fujiwara, K., Taguchi, H.*
Identification of novel in vivo obligate GroEL/ES substrates based on data from a cell-free proteomics approach.
FEBS Lett. 590, 251-257 (2016)

90*. Niwa T, Sasaki Y, Uemura E. Nakamura, S., Akiyama, M., Ando, M., Sawada, S., Mukai, S., Ueda, T., Taguchi, H.* and Akiyoshi, K.*
Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system.
Sci. Rep. Dec 15;5:18025. doi: 10.1038/srep18025. (2016)

89*. Niwa T, Sugimoto R, Watanabe L, Nakamura S, Ueda T, Taguchi, H.*
Large-scale analysis of macromolecular crowding effects on protein aggregation using a reconstituted cell-free translation system
Front Microbiol. 6, 1113 (2015) doi: 10.3389/fmicb.2015.01113. eCollection 2015

88. Ishino, S, Kawata, Y., Taguchi, H., Kajimura, N., Matsuzaki, K., *Hoshino, M.

Effects of C-terminal truncation of chaperonin GroEL on the yield of in-cage folding of the green fluorescent protein.
J. Biol. Chem. 290, 15042-15051 (2015)

87. Sim, S.H., Miyajima, D., Niwa, T., Taguchi, H., *Aida, T.

Tailoring micrometer-long high-integrity 1D array of superparamagnetic nanoparticles in a nanotubular protein jacket and its lateral magnetic assembling behavior.
J. Am. Chem. Soc. 137, 4568-4561 (2015)

86*. *Taguchi, H.,
Reaction cycle of chaperonin GroEL via symmetric “football” intermediate (review).
J. Mol. Biol. 427, 2912-2918 (2015)

85*. Okuda, M, Niwa, T., *Taguchi, H.,
Single-Molecule Analyses on the Dynamics of Heat Shock Protein 104 (Hsp104) and Protein Aggregates.
J. Biol. Chem. 290, 7833-7840 (2015)

84*. Odani, W, Urata, K, Okuda, M, Okuma, S, Koyama, H, Pack, CG, Fujiwara, K, Nojima, T, Kinjo, M, Kawai-Noma, S, Taguchi, H.*
Peptide sequences converting polyglutamine into a prion in yeast.
FEBS J. 282, 477-490 (2015)

83*. Ishimoto, T., Fujiwara, K., Niwa, T., Taguchi, H.*
Conversion of a chaperonin GroEL-independent protein into an obligate substrate.
J. Biol. Chem. 289 32073-32080 (2014)

82*. Koike-Takeshita, A., Mitsuoka, K., Taguchi, H.*
Asp52 in combination with Asp398 plays a critical role in ATP hydrolysis of chaperonin GroEL.
J. Biol. Chem. 289 30005-30011 (2014)

81*. Koike-Takeshita, A., Arakawa, T, Taguchi, H.*, Shimamura, T.*
Crystal structure of a symmetric football-shaped GroEL:GroES2 complex determined at 3.8Å reveals rearrangement between two GroEL rings.
J. Mol. Biol. 426, 3634-3641 (2014)

80*. Ohta, S., Kawai-Noma, S., Kitamura, A., Pack, C-G., *Kinjo, M. & Taguchi, H.*
The interaction of Hsp104 with yeast prion Sup35 as analyzed by fluorescence cross-correlation spectroscopy
Biochem. Biophys. Res. Commun. 442, 28-32 (2013)

Yamakawa, K., Furuki, T., Furuta, T., Hatanaka, R., Kikawada, T., Niwa, T. Taguchi, H. Furusawa H., Okahata, Y., and Sakurai, M.*
Experimental study on the mechanism underlying the anti-aggregation function of a group3LEA peptide.
Cryobiol. Cryotechnol. 59, 95-99 (2013)

78. Biswas, S., Kinbara, K., Niw
a, T., Taguchi, H., Ishii, N., Watanabe, S., Miyata, K., Kataoka, K., Aida, T.*

Biomolecular Robotics for Chemomechanically Driven Guest Delivery Fueled by Intracellular ATP
Nature Chemistry 5, 613-620 (2013)

77. Nojima, T.*, Konno, H., Kodera, N., Seio K
, K., Taguchi, H. and Yoshida, M.
Nano-scale alignment of proteins on a flexible DNA back-bone
PLoS One 7, e52534 (2012)

76. Nojima, T., Ikegami, T., Taguchi, H
. and Yoshida, M.*
Flexibility of GroES mobile loop is required for efficient chaperonin function.
J. Mol. Biol. 422, 291-299, 2012

75*. Niwa, T., Kanamori T., Ueda, T.*, Taguchi, H.*
Global Analysis of Chaperone Effects Using a Reconstituted Cell-Free Translation System
Proc. Natl. Acad. Sci. U.S.A. 109, 8937-8942 (2012) 

74. Fujiwara K*, Taguchi H.

Mechanism of methionine synthase overexpression in chaperonin-depleted Escherichia coli
Microbiology 158, 917-924 (2012)

73. Takemoto K*, Niwa T, Taguchi H.

Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement.
BMC Syst Biol. 5, 98 (2011)

72. Sasaki, Y, Asayama, W., Niwa, T., Sawada, S., Ueda, T., Taguchi, H., Akiyoshi, K.*

Amphiphilic Polysaccharide Nanogels as Artificial Chaperones in Cell-Free Protein Synthesis
Macromol. Biosci. 11, 814-820 (2011)

71. Inoue, Y., Kawai-Noma, S., Koike-Takeshita, A., Taguchi, H. and Yoshida, M.*

Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner.
Genes to Cells 16, 545-556 (2011)

70*. Tsuji, T., Kawai-Noma, S., Pack, C-G., Terajima, H., Yajima, J., Nishizaka, T., Kinjo, M. & Taguchi, H.*
Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells.
Biochem. Biophys. Res. Commun. 405, 638-643 (2011)

69. Zhou, Z-P., Shimizu, Y., Tadakuma, H.*, Taguchi, H., Ito, K. and Ueda, T.

Single molecule imaging of the trans-translation entry process via anchoring of the tagged ribosome.
J. Biochem. 149, 609-618 (2011)

68.* Kawai-Noma, S., Pack, C-G., Kojidani, T., Asakawa, H., Hiraoka, Y., Kinjo, M., Haraguchi, T., Taguchi, H.*, and Hirata, A.
In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells.
J. Cell Biol. 190, 223-231 (2010)

67*. Fujiwara, K., Ishihama, Y., Nakahigashi, K., Soga, T. and Taguchi, H.*
A systematic survey of in vivo obligate chaperonin-dependent substrates.
EMBO J. 29, 1552-1564 (2010)

66*. Taguchi, H.* and Kawai-Noma, S.
Diffuse oligomer-based transmission of yeast prions. (Review)
FEBS J. 277, 1359-1368 (2010)

65. Kubota, H., Mikhailenko, S. V., Okabe, H., Taguchi, H., and Ishiwata, S.*

D-loop of actin differently regulates the motor function of myosins II And V.
J. Biol. Chem. 284, 35251-35258 (2009)

64*. Kawai-Noma, S., Pack, C-G., Tsuji, T., Kinjo, M., Taguchi, H.*
Single mother-daughter pair analysis to analyze the diffusion properties of yeast prion Sup35 in guanidine-HCl treated [PSI+] cells.
Genes to Cells 14, 1045-1054 (2009)

63. Biswas, S., Kinbara, K., Oya, N., Ishii, N., Taguchi, H., Aida, T.*

A tubular biocontainer: Metal ion-induced 1D assembly of a molecularly engineered chaperonin.
J. Am. Chem. Soc. 131, 7556-7557 (2009)

62*. Niwa, T., Ying, B.-W., Saito, K., Jin, W. Z., Takada, S., Ueda, T.*, Taguchi, H.*
Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins.
Proc. Natl. Acad. Sci. U.S.A. 106, 4201-4206 (2009)

61. Kanno, R., Koike-Takeshita, A., Yokoyama, K., Taguchi, H., Mitsuoka, K.*

Cryo-EM structure of the native GroEL-GroES complex from Thermus thermophilus encapsulating substrate inside the cavity.
Structure 17, 287-293 (2009)

60. Hosono, K., Ueno, T., Taguchi, H., Motojima, F., Zako, T., Yoshida, M., Funatsu, T.*

Kinetic analysis of conformational changes of GroEL based on the fluorescence of tyrosine 506.
Protein J. 27, 461-468 (2008)

59*. Koike-Takeshita, A., Yoshida, M., Taguchi, H.*
Revisiting the GroEL-GroES reaction cycle via the symmetrical intermediate implied by novel aspects of the GroEL (D398A) mutant.
J. Biol. Chem. 283, 23774-23781 (2008)
Selected as JBC Papers of the Week

58. Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., Ueda, T., Puglisi, J., Funatsu, T.*

Single molecule imaging of full protein synthesis by immobilized ribosomes.
Nucleic Acids Research 36 e70 (2008)

57. Asayama, W., Sawada, S., Taguchi, H., Akiyoshi, K.*

Comparison of refolding activities between nanogel artificial chaperone and GroEL systems
Int. J. Biol. Macromol. 42, 241-246 (2008)

56*. Fujiwara, K. and Taguchi, H.*
Filamentous morphology in GroE-depleted Escherichia coli induced by impaired folding of FtsE.
J. Bacteriol. (2007) 189, 5860-5866 (2007)

55. Suzuki, H. Ueda, T., Taguchi, H. Takeuchi, N.*

Chaperone properties of mammalian mitochondrial translation factor Tu.
J. Biol. Chem. 282, 4076-4054 (2007)

54*. Kawai-Noma, S., Ayano, S., Pack, C-G., Kinjo, M., Yoshida, M., Yasuda, K., Taguchi, H.*
Dynamics of yeast prion aggregates in single living cells.
Genes to Cells 11, 1085-1096 (2006) abstract

53*. Ying, B.-W. Taguchi, H.*, Ueda, T.*
Co-translational binding of GroEL to nascent polypeptides is followed by post-translational encapsulation by GroES to mediate protein folding.
J. Biol. Chem. 281, 21813-21819 (2006)

52. Muramatsu, S., Kinbara, K., Taguchi, H., Ishii, N., Aida, T.*
Semibiological molecular machine with an implemented “AND” logic gate for regulation of protein folding.
J. Am. Chem. Soc. 128, 3764-3769 (2006)

51*. Koike-Takeshita, A, Shimamura, T., Yokoyama, K., Yoshida, M., Taguchi, H.*
Leu-309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL.
J. Biol. Chem. 281, 962-967 (2006)

50*. Taguchi, H.*
Chaperonin GroEL Meets the Substrate Protein as a “Load” of the Rings (review)
J. Biochem. 137, 543 – 549 (2005)

49. Ying, B.-W. Taguchi, H., Kondo, M., Ueda, T.*
Co-translational involvement of the chaperonin GroEL in the folding of newly translated polypeptides
J. Biol. Chem. 280, 12035-12040 (2005)

48. Inoue, Y., Taguchi, H., Kishimoto, A., Yoshida, M.*

Hsp104 binds to yeast sup35 prion fiber but needs other factor(s) to sever it.

J. Biol. Chem. 279, 52319-52323 (2004)

47. Ayano, S.#, Noma, S.#, Yoshida, M., Taguchi, H., Yasuda, K.* [# equally contributed]

On-chip single-cell observation assay for propagation dynamics of yeast Sup35 prion-like proteins

Jpn. J.Appl. Phys. 43, 1429-1432 (2004)

46. Taguchi, H., Tsukuda, K., Motojima, F., Koike-Takeshita, A., Yoshida, M.*

BeFx stops chaperonin cycle of GroEL/GroES and generates a complex with double folding chambers

J. Biol. Chem. 279, 45737-45743 (2004) free PDF

45. Ying, B.W., Taguchi, H., Ueda, H., Ueda, T.*

Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system.

Biochem. Biophys. Res. Commun. 320, 1359-1364 (2004)

44. Shimamura, T., Koike-Takeshita, A., Yokoyama, K., Masui, R., Murai, N., Yoshida, M., Taguchi H., Iwata, S.*

Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.

Structure 12, 1471-1480 (2004)

43*. Ueno, T.#, Taguchi, H.#, Tadakuma, H., Yoshida, M.*, Funatsu, T.*[# equally contributed]

GroEL mediates protein folding with a two successive timer mechanism.

Mol. Cell 14, 423-434 (2004)

42. Kishimoto, A., Hasegawa, K., Suzuki, H., Taguchi, H., Namba, K.*, Yoshida, M.*

Beta-helix is a likely core structure of yeast prion Sup35 amyloid fibers.

Biochem. Biophys. Res. Commun. 315, 739-745 (2004)

41. Suno, R., Taguchi, H., Masui, R., Odaka, M., Yoshida, M.*

Trigger factor from Thermus thermophilus is a Zn2+-dependent chaperone.

J. Biol. Chem. 279, 6380-6384 (2004)

40. Shimamura, T., Koike-Takeshita, A., Yokoyama, K., Yoshida, M., Taguchi H., Iwata, S.*

Crystallization of the chaperonin GroEL-GroES complex from Thermus thermophilus HB8.

Acta Crystallogr D Biol Crystallogr. 59, 1632-1634 (2003)

39. Fay, N., Inoue, Y., Bousset, L., Taguchi H., Melki, R.*

Assembly of the yeast prion Ure2p into protein fibrils: Thermodynamic and kinetic characterization.

J. Biol. Chem. 278, 30199-30205(2003)

38. Sekiguchi, H., Arakawa, H., Taguchi H., Ito, T., Kokawa, R., Ikai, A.*

Specific interaction between GroEL and denatured protein measured by compression-free force spectroscopy.

Biophys. J. 85, 484-490 (2003)

37. Makyio H, Niwa H, Motohashi K, Taguchi H., Yoshida M.*

Stabilization of FtsH-unfolded protein complex by binding of ATP and blocking of protease.

Biochem. Biophys. Res. Commun. 296, 8-12 (2002)

36. Yoshida, T., Kawaguchi, R., Taguchi, H, Yoshida, M., Yasunaga, T., Wakabayashi, T., Yohda, M., Maruyama, T.*

Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin.

J. Mol. Biol. 315, 73-85 (2002)

35. Fukami, T. A., Yohda, M., Taguchi, H., Yoshida, M., Miki, K.*

Crystal Structure of Chaperonin-60 from Paracoccus denitrificans.

J. Mol. Biol. 312, 501-509 (2001)

34. Inoue, Y., Kishimoto, A., Hirao, J., Yoshida, M.*, Taguchi, H.,

Strong growth polarity of yeast prion-fiber revealed by single fiber imaging. [Accelerated publication]

J. Biol. Chem. 276, 35227-35230 (2001)

33. Taguchi, H.#, Ueno, T.#, Tadakuma, H.#, Yoshida, M.*, Funatsu, T.* [# equally contributed]

Single-molecule observation of protein-protein interactions in the chaperonin system.

Nat. Biotechnol. 19, 861-865 (2001)

32. Takada, K.*, Hirakawa, T., Yokosawa, H., Okawa, Y., Taguchi, H., Ohkawa, K.,

Isolation of Ubiquitin-E2 (Ubiquitin-Conjugating Enzyme) Complexes from Erythroleukemia Cells using Immunoaffinity Techniques.

Biochemical J. 356, 199-206 (2001)

31*. Shiseki, K., Murai, N., Motojima, F., Hisabori, T., Yoshida, M., Taguchi, H.*

Synchronized domain opening motion of GroEL is essential for communication between the two rings. 

J. Biol. Chem. 276, 11335-11338 (2001)

30. Yokoyama, K.*, Ohkuma, S., Taguchi, H., Yasunaga, T, Wakabayashi, T., Yoshida, M.

V-Type H+-ATPase/synthase from a thermophilic eubacterium, Thermus Thermophilus; Subunit Structure And Operon.

J. Biol. Chem. 275, 13955-13961 (2000)

29. Watanabe, Y., Motohashi, K., Taguchi, H., Yoshida, M.*

Heat-inactivated proteins managed by DnaKJ-GrpE-ClpB chaperones are released as a chaperonin-recognizable nonnative form.

J. Biol. Chem. 275, 12388-12392 (2000)

28. Teshima, T., Kohda, J., Kondo, A.*, Taguchi, H., Yohda, M., Fukuda, H.,

Preparation of Thermus thermophilus holo-chaperonin-immobilized microspheres with high ability to facilitate protein refolding.

Biotechnol Bioeng. 68, 184-190 (2000).

27. Asahara, Y., Atsuta, K., Motohashi, K., Taguchi, H., Yohda, M., Yoshida, M.*

FtsH recognizes unfolded proteins and hydrolyzes carboxyl side of hydrophobic residues. 

J. Biochem. 127, 931-937 (2000)

26. Aoki, K., Motojima, F., Taguchi, H., Yomo, T., Yoshida, M.*

GroEL binds artificial proteins with random sequences. 

J. Biol. Chem., 275, 13755-13758 (2000)

25. Pack, C-G.*, Aoki, K., Taguchi, H., Yoshida, M., Kinjo, M., Tamura, M.

Effect of electrostatic interactions on the binding of charged substrate to GroEL studied by highly sensitive fluorescence correlation spectroscopy. 

Biochem. Biophys. Res. Commun., 267, 300-304 (2000)

24. Sakikawa, C., Taguchi, H., Makino, Y., Yoshida, M.*

On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES.

J. Biol. Chem. 274, 21251-21256 (1999)

23. Pack, C-G., Nishimura, G., Tamura, M., Aoki, K., Taguchi, H., Yoshida, M., Kinjo, M.*

Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy. 

Cytometry, 36, 247-253 (1999)

22. Teshima, T., Kohda, J., Kondo, A.*, Taguchi, H., Yohda, M., Endo, I., Fukuda, H.

Protein refolding system using holo-chaperonin from thermophilic bacterium Thermus thermophilus.

J. Ferment. Bioeng., 85, 564-570 (1998)

21. Taguchi, H. and Yoshida, M.*

Chaperonin from thermophile Thermus thermophilus.

Methods Enzymol. 290, (1998) 169-180

20. Yoshida T., Yohda M.*, Iida T., Maruyama T., Taguchi H., Yazaki K., Ohta T., Odaka M., Endo I., and Kagawa Y.*

Structural and Functional Characterization of Homo-oligomeric Complexes of alfa and beta Chaperonin Subunits from the Hyperthermophilic Archaeum, Thermococcus strain KS-1.

J. Mol. Biol., 273, 635-645 (1997).

19. Aoki, K., Taguchi, H., Shindo, Y., Yoshida, M.*, Ogasahara, K., Yutani, K., Tanaka, N.

Calorimetric Observation of a GroEL-Protein Binding Reaction with Little Contribution of Hydrophobic Interaction.

J. Biol. Chem. 272, 32158-32162 (1997)

18. Nakamura, N., Taguchi, H., Ishii, N., Yoshida, M., Suzuki, M., Endo, I., Miura, K., Yohda, M.*

Purification and molecular cloning of the group II chaperonin from the acidothermophilic archaeon, Sulfolobus sp. strain 7.

Biochem. Biophys. Res. Commun. 236, 727-732 (1997)

17. Taguchi, H., Amada, K., Murai, N., Yamakoshi, M., Yoshida, M.*

ATP-, K+-dependent Heptamer Exchange Reaction Produces Hybrids between GroEL and Chaperonin from Thermus thermophilus.
J. Biol. Chem. 272, 18155-18160 (1997)

16. Makino, Y., Amada, K., Taguchi, H., Yoshida, M.*

Chaperonin-mediated folding of Green Fluorescent Protein.

J. Biol. Chem. 272, 12468-12474 (1997)

15. Amada, K., Yohda, M., Odaka, M., Endo, I., Ishii, N., Taguchi, H., and Yoshida, M.*

Molecular cloning, expression, and characterization of chaperonin-60 and chaperonin-10 from a thermophilic bacterium, Thermus thermophilus HB8.

J. Biochem. 118, 347-354 (1995) .

14. Murai, N., Taguchi, H. and Yoshida, M.*

Kinetic analysis of interaction between GroEL and reduced alfa-lactalbumin; Effect of GroES and nucleotides.

J. Biol. Chem. 270, 19957-19963 (1995)

13. Ishii, N., Taguchi, H., Sasabe, H., and Yoshida, M.*

Equatorial split of holo-chaperonin from Thermus thermophilus by ATP and K+.

FEBS Lett. 362, 121-125 (1995)

12. Taguchi, H. and Yoshida, M.*

Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin.

FEBS Lett. 359, 195-198 (1995)

11. Motohashi, K., Taguchi, H., Ishii, N., and Yoshida, M.*

Isolation of the stable hexameric DnaK-DnaJ complex from Thermus thermophilus.

J. Biol. Chem. 269, 27074-27079 (1994) free PDF

10. Ishii, N., Taguchi, H., Sasabe, H., and Yoshida, M.*

Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody.

J. Mol. Biol. 236, 691-696 (1994)

9. Taguchi, H., Makino, Y., and Yoshida, M.*

Monomeric chaperonin-60 and its 50kD fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding.

J. Biol. Chem. 269, 8529-8534 (1994) free PDF

8. Makino, Y., Taguchi, H. and Yoshida, M.*

Truncated GroEL monomer has the ability to promote folding of rhodanese without GroES and ATP.

FEBS Lett. 336, 363-367 (1993)

7. Yoshida, M.*, Ishii, N., Muneyuki, E. and Taguchi, H.

A chaperonin from a thermophilic bacterium, Thermus thermophilus.
Phil. Trans. R. Soc. Lond. B 339, 305-312 (1993)

6. Taguchi, H. and Yoshida, M.*

Chaperonin from Thermus thermophilus can protect several enzymes from irreversible heat denaturation by capturing denaturation intermediate.

J. Biol. Chem. 268, 5371-5375 (1993)

5. Sumi, M., Taguchi, H., Yokoyama, K., Ishii, N. and Yoshida, M.*

Identification and characterization of a chaperonin from Paracoccus denitrificans.
Life Sci. Adv. 11, 179-182 (1992)

4. Ishii, N., Taguchi, H., Sumi, M. and Yoshida, M.*

Structure of holo-chaperonin studied with electron microscopy: Oligomeric cpn10 on top of two layers of cpn60 rings with two stripes each.

FEBS Lett. 299, 169-174 (1992)

3. Ishii, N., Taguchi, H., Yoshida, M., Yoshimura, H., and Nagayama, K.*

Image analysis by electron microscopy of two-dimensional crystals developed on a mercury surface of chaperonin from Thermus thermophilus.

J. Biochem. 110, 905-908 (1991)

2. Taguchi, H., Konishi, J., Ishii, N., and Yoshida, M.*

A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refoldings of several thermophilic enzymes.

J. Biol. Chem. 266, 22411-22418 (1991)

1. Kobayashi, Y.*, Shimazaki, T., Taguchi, H., and Sato, F.*

Highly stereocontrolled total synthesis of Leukotriene B4, 20-hydroxyleukotriene B4, Leukotriene B3, and their analogues.

J. Org. Chem. 55, 5324-5335 (1990)

——- Books ——–

1. Taguchi, H. and Yoshida, M.
GroEL and GroES of Thermus thermophilus. in “Guidebook to Molecular Chaperones and Protein-folding catalysts” edited by M. -J. Gething, Sambrook and Tooze Publication at Oxford University Press 187-188 (1997).

2. Yamakoshi, M., Taguchi, H., Ishii, N., Yoshida, M.,
A Chaperonin from a Thermophilic Bacterium, Thermus thermophilus. 
in “Molecular Chaperones in the life cycle of proteins”, edited by A. L. Fink and Y. Goto), Marcel Dekker, 301-330 (1997)